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Motivation.
Although there are plenty of exotic finite groups, Geometric Group Theory has focused primarily on

infinite groups. However, finite groups have some very convenient properties. It is therefore valuable to
consider infinite groups with properties that are similar to those of finite groups. As it stands, this post is
principally inspired by [2]. We’ll begin by answering what it means to be residual.

Definition 1. For a given property P , a group G is said to be residually P if for any g 6= e ∈ G, there
exists a normal subgroup K E G such that g /∈ K and G/K has property P .

Although questions about residual properties can motivate many different areas of study, we will focus
on the following example:

Residual Finitude.

Definition 2. A group G is said to be residually finite if for every g 6= e ∈ G, there exists a normal
subgroup K E G such that K has finite index with respect to G and g /∈ K.

It follows from this definition that all finite groups are residually finite, since 〈e〉 is normal to all groups,
and always has finite index to finite groups. Our principal interest here is going to be questions about
the residual finitude of infinite groups. GGT has had us playing around with infinite groups and their
corresponding symmetry groups, also known as automorphism groups:

Definition 3. The symmetry group (also known as the automorphism group) of a group G is the group
formed by the set of automorphisms on G endowed with the operation of composition.

As it happens, we can obtain something nice involving symmetry groups and residual finitude.

Theorem 1. The symmetry group of a finitely generated residually finite group G is itself residually finite.

To prove this theorem, we’ll need some machinery. First, we’ll need a lemma, which requires the following
definition.

Definition 4. Let G, H be groups with H ≤ G. If every automorphism f of G satisfies f(H) = H, then H
is a characteristic subgroup of G.

Example. Let G = Z4 = 〈a
∣∣ a4〉. Then the automorphisms of G are the identity automorphism e and the

automorphism g : a 7→ a3. We observe that reduced elements of the form 0 and a2 are invariant under both
e and g, so the subgroup 〈a2

∣∣ a4〉 ≤ G is characteristic.

Lemma 1. For groups G,H with H ≤ G, let H be characteristic to G. Then there is a homomorphism
given by

ψ : Sym(G)→ Sym(G/H)

where for ϕ ∈ Sym(G), ψ(ϕ) = ϕ(G/H).

Proof. It follows directly that ψ(e) = e. Let ϕ,ϕ′ ∈ Sym(G) be non-trivial automorphisms of G. Then
ψ(ϕϕ′) = ϕ(G/H)ϕ′(G/H) = ψ(ϕ)ψ(ϕ′).

Equipped with some facts about characteristic subgroups, we are ready to prove Theorem 1.
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Proof. Let Φ = Sym(G) be the symmetry group of G, and let ϕ ∈ Φ such that ϕ 6= e. Since ϕ isn’t the
identity automorphism, there must be at least one g ∈ G such that

h = ϕ(g)g−1 6= e.

Since G is residually finite by assumption, there is some K normal to G with [G : K] = n ∈ N such that
h /∈ K. Further define K∗ as the intersection of all subgroups of G which are normal to G with index n. K∗

itself must have finite index with respect to G, and K∗ must be characteristic with respect to G [1].
We now want to say something about Sym(G/K∗) = Φ′. Since K∗ is characteristic, we know that the

map
ψ : Φ→ Φ′

is a homomorphism by Lemma 1. Fortuitously, ψ(ϕ) = ϕ′ 6= e, since ϕ permutes h /∈ K∗, so h ∈ G/K∗ and
thus ϕ′ must be non-trivial.

Importantly [Φ : Φ′] = 1 and kerψ = e, which follows from the fact that K∗ is characteristic and thus
invariant under automorphism. Since our choice of ϕ was arbitrary, residual finitude implies the existence
of a K∗ for any ϕ, and the subgroup of automorphisms Φ′ associated with G/K∗ has finite index to Φ, it
must be the case for finitely-generated residually finite groups that their symmetry group Φ is residually
finite.

Not only is this a tasty result, it’s due to Gilbert Baumslag, one of the people who (didn’t) discover
Baumslag-Solitar groups!

Corollary 1. Free groups are residually finite.

To prove this corollary, we’ll make an argument about matrices, and to do so we’ll want a lemma about
free abelian groups. Recall that free abelian groups are, as the name suggests, like free groups but abelian;
they can be thought of as an iterated direct product.

Lemma 2. Free abelian groups are residually finite.

Proof. Let G = Zn = Z⊕Z⊕· · ·⊕Z be a free abelian group. Since G is abelian, every subgroup of G is
normal. Let h = (a, b, . . . , n) for a 6= e. The subgroup K = Z/aZ⊕ Z⊕ · · · ⊕ Z has index a with respect to
G, and h /∈ K. Since our choice of h was arbitrary, the lemma holds, and we’re ready to prove Corollary 1.

Proof. From our demonstration of the Ping Pong Lemma a few weeks ago, we know

A =

[
1 2
0 1

]
, B =

[
1 0
2 1

]
defined by matrix multiplication suffices to generate the free group F2. But we also know that these matrices
are automorphisms of the free abelian group of rank two. Specifically, the free abelian of rank two can be
given as G = 〈x, y

∣∣ xy = yx〉 over addition, and for a ∈ G we have Aa = (x+ 2y, y) and Ba = (x, 2x+ y).
A bit of computation confirms these are automorphisms.

We’ll quickly detour to point out that every subgroup H ≤ Sym(G) is residually finite, which follows
from a bit of casework. Detour in hand, we invoke Lemma 2, namely that free abelians groups are residually
finite; by Theorem 1 the symmetry group of the free abelian of rank 2 must be residually finite, which implies
that F2 is a subgroup of a residually finite group. Thus F2 must be residually finite.

We showed in class that for all n ∈ N we have Fn ≤ F2, and so we conclude that since F2 is residually
finite, all free groups are residually finite.

We know free groups are pretty friendly, and now we have that free groups are residually finite, which
helps us believe that residual finitude is a friendly thing for a group to be. We’ll emphasize that even more
by tying residual finitude to being Hopfean.

Residual Finitude and Being Hopfian

Recall 1. A group G is Hopfian if there is no non-trivial quotient group G/K such that G ∼= G/K.

Theorem 2. Let G be a finitely generated residually finite group. Then G is Hopfian.
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To prove this works, we’ll need two more lemmas:

Lemma 3. Let G be a finitely generated group. Every normal subgroup K E G of finite index contains a
normal subgroup of finite index with respect to G.

Proof. This proof comes from [3]. Reproducing the proof in its entirety would require three additional
lemmas, and so it is omitted here for brevity.

Lemma 4. Let W ⊆ L be a set of words on the language L. If groups G1 and G2 are isomorphic, then
Γ1
∼= Γ2, where

Γ1 = G1/G1(W ).

Γ2 = G2/G2(W )

In other words, adding the action of quotienting is similar to adding relators and should have the same
impact on isomorphic groups.
Proof. We may let ϕ be a group homomorphism from G1 to G2. This means that G1(W, . . .) can be mapped
injectively onto G2(W, . . .), and since G1

∼= G2, we can also map the cosets of Γ1 isomorphically to the cosets
of Γ2.

We’re now ready to prove Theorem 2.
Proof. Towards a contradiction, let N E G such that N 6= 1 satisfies G/N := G′ ∼= G. We’ll seek to show
that this fails to work because mapping G→ G′ will to map non-trivial elements to e.

Consider some g 6= 1 ∈ G. By assumption of residual finitude, there is some finite index K E G such
that g /∈ K. By Lemma 3, there is a group V ≤ K such that [G : V ] is finite, and by assumption V should
have the same index to G′. We’re now ready to invoke Lemma 4: if G ∼= G′, then G/V ∼= G′/V . Consider
the canonical map

ψ : G/V → G′/V.

We anticipate these quotients to be equivalent. However, we observe from the following subgroup lattice
that they must be different:

G

K G/N

V K

V

?

n

n

This gives us our desired contradiction.
Theorem 2 had as a condition that G be residually finite. Does the result hold if G isn’t residually finite?

No!
Counterexample. Baumslag-Solitar groups are finitely-generated and (mostly) non-Hopfian, as per Home-
work 3. It’s non-constructive, but we can safely conclude that Baumslag-Solitar groups are not residually
finite.

Some Conclusions.
Every known hyperbolic group is residually finite. However, it remains an open question whether it is

necessecary for hyperbolic groups to be residually finite. Like hyperbolicity, residual finitude is a condition
that endowed to “nice” groups; the property of being Hopfian is a good example of this “nice” behavior.
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