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1 Introduction

I aim to provide a short survey on Fuchsian groups. I’ll start off by talking about the hyperbolic metric on
the upper half plane, then talk about the projective analog of the special linear group and how it acts on
the upper half plane by isometries. Then, I’ll give a brief description of topological groups and their discrete
subgroups. We then have enough machinery to define Fuchsian groups! The paper ends with a proof of the
theorem that every abelian Fuchsian group is cyclic.

2 Hyperbolic Geometry and PSL2(R)
We can think of the hyperbolic metric loosely as the Euclidean distance over the y coordinate. It is written
out more rigorously below.

ds =

√
dx2+dy2

y

This metric leads to very interesting things in its own right. Geodesics in this space are centered semi-
circles and verticle lines. There is even a notion of a ’biggest triangle’ under this metric. Additionally, no
squares (four sided geodesic quadrilaterals) can exist under this metric. From now on, I’ll notate H to be
the upper half plane equipped with the hyperbolic metric.

A tiling of the hyperbolic upper half plane. Each figure is congruent under the hyperbolic metric
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We now shift gears a little bit to talk about Möbius (or fractional linear) transformations. Möbius
transformations are transformations of the complex plane, given by the form below.

{z → az+b
cz+d |a, b, c, d ∈ R}

It actually turns out that we can view these fractional linear transformations as matrices, where composing
the transformations corresponds to matrix multiplication! This is not at all obvious at first, so bear with
the calculations for a second.

Let α =
az + b

cz + d
and β =

ez + f

gz + h

We compose α · β

=
a( ez+f

gz+h ) + b

c( ez+f
gz+h ) + d

=
a(ez + f) + b(gz + h)

c(ez + f) + d(gz + h)

=
(ae+ bg)z + (af + bh)

(ce+ dg)z + (cf + dh)

Notice now if we think α and β as matrices

(
a b
c d

)
and

(
e f
g h

)
respectively, the product αβ is(

ae+ bg af + bh
ce+ dg cf + dh

)
, precisely the coefficients in our composed fractional linear transformation.

I now state a pretty important theorem without a complete proof (the proof is very computationally
heavy and I don’t think the proof itself adds much value to this report.

Theorem: PSL2((R) ⊂ Isom(H)
What is this mystery group named PSL2(R)? It’s simply SL2(R)/ ± 1, where 1 represents the two by

two identity matrix. We have to mod out by this because we are using the upper half plane model for the
hyperbolic plane, and we’d like isometries of the upper half plane to be sent to the upper half plane. The
proof involves showing that elements of PSL2(R) maps geodesics to geodesics, and is thus an isometry. With
this connection between fractional linear transformations and viewing it as a more familiar matrix group,
we are almost ready to define Fuchsian groups!

3 Topological Groups and Discrete Subgroups

An important part of the definition of a Fuchsian group is that it is a topological group. Loosely speaking,
a topological group is a topological space that is also a group. More specifically, we require both the group
operation and taking inverses to be continuous. This means that an equivalence in the sense of topological
groups is both a group isomorphism and a homeomorphism of the underlying topological spaces.

Making sure these operations are continuous is often the trickiest part of defining a topological group.
However, a set where the topology is very nicely behaved makes this very easy. This is precisely the idae
behind a discrete subgroup. A discrete subgroup is a subgroup of a topological group that inherits the discrete
topology. We can think about this inheritance as ignoring whatever topological structure was put on the
parent group. More specifically, the discrete defines every element of the space to be open. If you are curious
about the rigorous definitions, I’d urge you to look at the book Fuchsian Groups by Svetlana Katok. The
value of discrete subgroups comes when we look at actions of the group: the action is properly discontinuous.

In the case of PSL2(R), it is not immediately clear where it gets its topology from. It is a long string
of inheritances: since it is a matrix group, it inherits our familiar Euclidean topology from R4, and we then
identify (a, b, c, d) 7→ (−a,−b,−c,−d).
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4 Fuchsian Groups

We now define a Fuchsian group as a discrete subgroup of PSL2(R), or equivalently as a group that acts
properly discontinuously on H.

One example we’ve already seen is simply PSL2(Z), which is also known as the modular group. It follows
from the definition that any subgroup of a Fuchsian group is also Fuchsian.

We’d like to characterize the elements in any Fuchsian group, and to do so, we look to its parent group
PSL2(R). One way that may become clear after reminding ourselves that the group is made up of fractional
linear transformations is to look at the fixed points of any given element.

Recall, fractional linear transformations are of the form

{z → az+b
cz+d |a, b, c, d ∈ R, ad− bc = 1}

To find fixed points, we set them equal

z = az+b
cz+d .

With some algebra, we get

cz2 − (d− a)z − b = 0.

From here, we consider two cases, c ̸= 0 and c = 0. If c ̸= 0, we can use the quadratic formula to solve
to get

z =
a−d±

√
(d−a)2+4bc

2c .

The important part of this equation is the discriminant as it tells us where our fixed points will be! We
solve

(d− a)2 + 4bc = d2 + a2 − 2ad+ 4bc

= d2 + a2 − 2ad+ 4(ad− 1)

= d2 + a2 + 2ad− 4

= (d+ a)2 − 4

So it depends only on a and d, which is our trace of our matrix! Since we’re modding out by ±1, let’s
define our Trace function Tr as |a + d|. If Tr(T ) < 2, then the fixed points are complex and conjugate to
each other, so exactly one will be in H. If Tr(T ) = 2, then one point will be in R, and if Tr(T ) > 2, then
both points are fixed in R

In the case that c = 0, we get ad = 1, and our equation for finding fixed points becomes z = a2z − ba.
Note that ∞ is a possible solution for this equation! By plugging in values similar to the method above, we
are able to classify elements in PSL2(R) purely based on this trace function.

• If Tr(T ) > 2 we call T hyperbolic

• If Tr(T ) = 2 we call T parabolic

• If Tr(T ) < 2 we call T elliptic

Recall from linear algebra that our trace function is basis-independent! In the context of a group, this
means that trace is also preserved under conjugation by group elements. This lets us have a sort of canonical
matrix form for each type of element that will prove to be very useful in proving our following claim.

Proposition 1 Every Fuchsian group is abelian if and only if it is cyclic

To prove this, we first prove several lemmas.
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Lemma 1 Given T, S ∈ PSL2(R), if S and T commute, then they must have the same number of fixed
points.

Proof : If Tp = p, then STp = Sp. Since TS = ST , we get that STp = TSp = Sp, or, that T also fixes
Sp.

Lemma 2 Two nontrivial elements of PSL2(R) commute if and only if they have the same fixed point set.

Proof : We’ll proceed by a case analysis on the three types of elements.
In the case of one fixed point, we have two elements T, S that commute. Since they commute, T maps

the fixed point of S to itself injectively (follows from the lemma above). Furthermore, S also maps the fixed
point of T to itself. So they fix each other’s fixed points, and since this is the case where there is only one
fixed point, that point must be the same point.

In the case that our elements are hyperbolic (they have two fixed points), we can use conjugates to put
our matrix T into a form (

λ 0
0 λ−1

)
Where λ ̸= 1. This element fixes the points 0 and ∞. We don’t know about the fixed points of S, just

that it commutes with T , so we write(
λ 0
0 λ−1

) (
a b
c d

)
=

(
aλ bλ−1

cλ dλ−1

)
(
a b
c d

) (
λ 0
0 λ−1

)
=

(
aλ bλ
cλ−1 dλ−1

)
These are only ever equal in the cases that λ = 1, which is not possible since our element is hyperbolic (if

our element was elliptic or parabolic then see the case of one fixed point above), or the case that b = c = 0,
which gives us that S also fixes the points 0 and ∞.

We now prove that two elements having the same fixed point set implies that they commute.
If we are given two elements that have the same fixed point set, which means that these elements are of

the same type! This means we can use the same conjugator to send them to a form that commutes with
itself. Since an element of this form commutes with another element of the same form, then the conjugates
(when mapped by the same conjugator) will also commute.

We can conjugate an elliptic element to have the form(
cos θ − sin θ
sin θ cos θ

)
Similarly, for a parabolic element we get the form.(

1 x
0 1

)
And for a hyperbolic element, we get our old friend(

λ 0
0 λ−1

)
Every elememt of each type commutes with any other element in its own type! Since our conjugates

commute, the elements also commute.
We are now well - armed enough to prove our original claim.

Theorem 3 Every Fuchsian group is abelian if and only if it is cyclic
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Proof : We know that any cyclic group is abelian, so we immediately jump into proving the other direction.
If we have an abelian Fuchsian group, all of its elements must commute with each other. From Lemma

2, we get that they fix the same points. Finally, we know that elements that have the same fixed point set,
must be of the same type, so we get that all nontrivial elements are of the same type. This means that we
can conjugate every single element by the same conjugator to send the elements to our nicer forms.

For hyperbolic elements, we have the matrix(
λ 0
0 λ−1

)
We can map these elements isomorphically to a discrete subgroup of (R∗, ·) under the map λ2, which is

cyclic!
For parabolic elements we have the conjugated matrix(

1 x
0 1

)
We can map these elements isomorphically to a discrete subgroup of (R,+) under the map x, which is

cyclic!
Finally, we have elliptic elements we get (

cos θ − sin θ
sin θ cos θ

)
We map this to a discrete subgroup of S1, ·C under the function eiθ. Again, this is a cyclic group!

We have shown in every case, that our abelian group is isomorphic to a cyclic group!

This has neat corollary, namely that no Fuchsian group is isomorphic to Z × Z, because it is an abelian
but not cyclic group.
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