
WHAT GROUPS ARE AMENABLE, AND WHAT ARE NOT

SHUHANG XUE

Abstract. We define what does it mean for a group to be amenable, and

discuss examples of amenable groups and non-amenable groups. Moreover, we

prove the Inheritance Theorem of Amenability to decide the amenability of
more groups we have studied in class.
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1. What does it mean for a group to be Amenable

First, for X a set, we denote L∞(X,R) as the set of all bounded functions
f : X → R. Note that L∞(X,R) is a R−vector space with point-wise addition and
scalar multiplication.

Another remark is that a leftG−action onX induces a leftG−action on L∞(X,R)
in the following way:

φ : G× L∞(X,R) → L∞(X,R)
φ(g, f) : x 7→ f(g · x), for x ∈ X.

Note that φ is indeed an action on L∞(X,R) since first, we note that the identity
condition is satisfied by

e · f(x) = f(e · x) = f(x).

The transitivity condition is satisfied by

g · (k · f)(x) = g · f(k · x) = f(g · (k · x)) = f(gk · x)) = gk · f(x),
where g, k ∈ G.

An immediate example is that the left translation of G defined by h 7→ gh for
fixed g ∈ G and ∀h ∈ G induced an action of G on L∞(G,R), which we call the
induced left translation on L∞(G,R).
Definition 1.1 (Amenable Groups). A group is amenable if there is a G−invariant
mean on L∞(G,R), i.e., an R-linear mapm : L∞(G,R) → R such that the following
properties are satisfied:

(i) (Normalization) m(f1) = 1, where f1 is the constant 1-map,
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(ii) (Positivity) m(f) ≥ 0 if f ≥ 0 pointwise,
(iii) and (Left-invariance) m(g · f) = m(f) where g · f is the induced left trans-

lation on L∞(G,R)

Remark 1.2. The linearity condition is defined based on the vector space structure
of L∞(G,R) as remarked earlier. In defining G- invariant mean later on, I will skip
checking the linearity since it is straightforward to check.

Remark 1.3. Intuitively, we define a G−invariant mean, m, on the set of bounded
real functions defined on groups to generalize the usual notion of means of functions
defined on sets. Therefore, we require m to be R-linear so that the mean respects
the vector space structure of L∞(G,R).

The normalization and positivity conditions are two conditions a mean func-
tion should satisfy. The left-invariance condition makes sure that the mean is
G−invariant so that upon left actions on G, the mean is fixed. I understand this
property as if we graph a function f ∈ L∞(G,R), then by changing x−axis through
a left translation (a permutation on G), the mean should remain unchanged.

2. Examples of (non)amenable groups

Proposition 2.1. Finite groups are amenable.

Proof. G be a finite group, then we can define m such that for f ∈ L∞(G,R),

m(f) =
1

|G|
∑
g∈G

f(g).

Notice that the normalization condition is satisfied since m(f1) =
|G|
|G| = 1. Also,

one can check the positivity condition quite easily. For the left-invariance condition,
we note that since G is a finite group,∑

g∈G

f(g) =
∑
g∈G

f(hg),

by Cayley’s Theorem.
(Indeed, m in this case is called the averaging operator since it sums over all

values of f and is divided by the order of G.) □

However, when it comes to infinite groups, whether a group is amenable or not
become extremely hard to answer since the sum may become infinite and it makes
no sense to divide something by an infinite number. Fortunately, because abelian
groups are particularly nice, they are amenable.

Theorem 2.2. Abelian groups are amenable.

We omit the proof since it involves some essential theorems in functional analysis.
To see why functional analysis is crucial here, the function space L∞(G,R) with
the supremum norm is a Banach space by checking the completeness. When G
is infinite, L∞(G,R) is infinite dimensional so that results in functional analysis
become essential. Specifically, the key tool in the proof uses Markov-Kakutani fixed
point theorem, for which I have a simple proof only using Hahn-Banach. For folks
who want to see details, please feel free to reach out to me or read p.291 in [1].

In the Merriam-Webster Dictionary, ”amenable” is defined as ”liable to be
brought to account”. In the context of groups, amenability recognizes the ”finite-
ness” of the group structure; i.e., can subgroups entirely preserve the structure of
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its parent group? According to this intuition, we can conjecture free groups to be
not amenable since free groups contain free groups of any index as subgroups.

Proposition 2.3. The free group F2 is not amenable.

Proof. Towards a contradiction, assume that F2 = {a, b |} is amendable with a
left invariant mean m. Let A be the set of freely reduced words that start with a
non-trivial power of a. Then, we observe that

A ∪ a−1 ·A = F2.

Recall that the characteristic function of S ⊂ X, denoted by χS , sends S to 1
and X−S to 0. In other words, the characteristic function indicates when elements
are in the subset. Therefore, an immediate property of characteristic functions is
χA + χB = χA∪B if A and B are disjoint. Moreover, we claim that

m(χA + χB) ≥ m(χA∪B).

Since the difference (χA + χB) − χA∪B is non-negative, we have m[(χA + χB) −
χA∪B ] ≥ 0 by the positivity property of a left invariant mean. Then, by the R
linearity of m, we see the claim.

We apply χ to A, a−1 ·A, and F2 to note that

1 = m(1) = m(χF2
) ≤ m(χA + χa−1·A)

= m(χA) +m(χa−1·A)

= m(χA) +m(a−1 · χA)

= 2m(χA)

=⇒ m(χA) ≥ 1/2,

where the second to last equality holds by writing out the definitions and the last
equality holds by the left-invariance property of m.

On the other hand, we also have that A, b · A, and b2 · A are pairwise disjoint
and elements like b3a are not in their union. Therefore, we have

1 = m(1) ≥ m(χA∪(b·A)∪(b2·A))

= m(χA) +m(χb·A) +m(χb2·A)

= m(χA) +m(b · χA) +m(b2 · χA)

= 3m(χA) ≥ 3/2,

which is the desired contradiction.
□

3. More (non)amenable groups

We establish the following theorem to check the amenability of more groups.
It turns out that amenability can be inherited in the sense that algebraic opera-
tions like taking subgroups, homomorphic images, imposing exact sequences, and
decomposing into ascending chains.

Theorem 3.1 (The Inheritance Theorem of Amenability). (i) Subgroups of
amenable groups are amenable.

(ii) Homomorphic images of amenable groups are amenable.
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(iii) Consider the following group extension (1 denotes the trivial group, i injec-
tive, π surjective, and Im i = kerπ):

1 N G Q 1.i π

Then, G is amenable if and only if N and Q are amenable.
(iv) For group G, if there is an ascending chain of amenable subgroups, (Gi)i∈I ,

such that G =
⋃

i∈I Gi, then G is amenable.

Before proving the theorem, we make a remark on how to use the theorem and
a black-boxed fact that Z is amenable to show that abelian groups are amenable
(Theorem 2.2).

Remark 3.2. By (iii), we note that taking product preserves amenability by viewing
products as the extension by the two components. Therefore, using the fundamental
theorem of finitely generated abelian groups, we can decompose an arbitrary abelian
group G as a product of either Z or finite cyclic groups. Therefore, by knowing
that Z is amenable, we can deduce Theorem 2.2, which is reassuring since Z is the
building block of all abelian groups.

Proof of Theorem 3.1. (i) Let G be amenable with G-invariant mean m. Then, we
consider subgroup H and define m′ : L∞(H,R) → R as

m′(f) =
m(f̄)

χH
,

where f is a real valued function on H and f̄ extends f by sending G−H to 0.
First, notice that when f is the constant 1 function from H to 1, then f̄ = χH

so that m′(f1) = 1.
Next, when f is non-negative, we note that f̄ is also non-negative, which implies

m′(f) ≥ 0.
Finally, let h ∈ H and we claim that h · f̄ = h · f. Indeed, for g ∈ H, we note

that since hg ∈ H, the equality holds since f̄ is the extension of f . When g /∈ H,
hg is also not in H so that h · f̄(g) = h · f(g) = 1. By the claim, we can conclude
that

m′(h · f) = m(h · f)/χH = m(h · f̄)/χH = m(f̄)/χH = m′(f).

Thus, H is amenable.
(ii) Suppose that we have a homomorphism ϕ : G → K, then G/ kerϕ ≈ ϕ(G)

so that we call the canonical projection

π : G → ϕ(G).

Again, we notice the commutativity between left translation of ϕ(G) and π (literally,
this is the ”left half” of the definition of a group homomorphism), i.e., for k̄ ∈ ϕ(G),
k̄π(g) = π(kg).

We define m′ : L∞(ϕ(G),R) → R again by pre-composing π:

m′(f) = m(f ◦ π).

Therefore, we may duplicate the proof in (i) to conclude that m′ is a left ϕ(G)-
invariant mean on ϕ(G) so that ϕ(G) is amenable.

(iii) Note that by the definition of short exact sequences, we may translate the
condition to be N ⊂ G and Q ≈ G/N . Then, the only if direction directly follows
from (i) and (ii).
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Conversely, we assume that N has a left invariant mean mN and Q has a left
invariant mean of mQ. We claim that the following definition of m gives a left
invariant mean of G:

m(f) = mQ(hf ),

where hf ∈ L∞(G/N,R) is defined as

hf (gN) = mN (kg : n 7→ f(gn)),

for f ∈ L∞(G,R), g takes value in a representative set of G/N , and kg ∈ L∞(N,R)
(we ignore the subscript f on k as an abuse of notation).

You might be intimidated by my definition of m since it involves defining many
layers of functions. I hope the definition will become clear in the process of showing
that m is a left invariant mean.

First, if f is the constant 1 function, then for any g ∈ G, each kg is constant
one function on N , which would imply that mN (kg) = 1 for each g ∈ G. Moreover,
from the nested definition, we also see that hf is a constant one function on G/N ,
which would imply that m(f) = mQ(hf ) = 1.

Second, if f is a non-negative function, we have that each kg is a non-negative
function on N so that mN (k) ≥ 0 since mN is a left-invariant mean. Again, from
the nested definition, hf is a non-negative function so that m(f) = mQ(hf ) ≥ 0
since mQ is a left-invariant mean.

Lastly, assume that x ∈ G and note that m(x · f) = mQ(hx·f ), and the corre-
sponding kg is defined as n 7→ f(xgn). Thus, kg corresponded to x · f is exactly
kxg = x · kg corresponded to f .

Then, we consider two cases.

Case I. x ∈ N . Then, since mN is left invariant, mN (kg) = mN (x · kg), which
implies that hx·f = hf so that m(f) = m(x · f).

Case II. x /∈ N . Observe that hx·f (gN) = hf (xgN), which means exactly hx·f =
x · hf . Since mQ is left G-invariant, we conclude that

m(x · f) = mQ(hx·f ) = mQ(x · hf ) = mQ(hf ) = m(f).

(iv) We omit this proof, since again, it uses results in functional analysis.
□

To see the power of the inheritance theorem of amenability, we present the
following corollaries that tell us amenability of more groups.

Corollary 3.3 (Amenability of locally amenable groups). A group is amenable if
and only if all of its finitely generated subgroups are amenable.

Proof. The only if direction follows from (i) of Theorem 3.1.
Conversely, if all finitely generated subgroups of G are amenable, then there

exists an ascending chain of subgroups of G that cover the entire G (include one
more group element at a time). By (iv) of Theorem 3.1, we complete the proof. □

Example 3.4. The infinite dihedral group D∞ is amenable, since its finitely gener-
ated subgroup is either finite (thus amenable) or Z, which is also amenable since it
is abelian.

Corollary 3.5 (Solvable groups are amenable). If a group is solvable, then it is also
amenable.
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Proof. First, we know that finite groups are amenable. Recall that if a group G
is solvable, then its derived series terminates. Equivalently, G can constructed as
an extension of abelian groups (covered in Galois Theory by Mark). Using (iii) of
Theorem 3.1, we conclude the proof. □

Example 3.6. Again, from the Galois Theory by Mark, all Sn with n ≤ 4 are
solvable (in fact we checked this in homework). Therefore, all Sn with n ≤ 4 are
amenable. However, we cannot say that about S5 because of the obvious reason.

Corollary 3.7. Groups that contain F2 as a subgroup are not amenable.

Proof. This directly follows from the contrapositive of (i) of Theorem 3.1 and the
fact that F2 is not amenable. □

Example 3.8. All free groups are not amenable as expected.

Our finial statement is on the amenability of hyperbolic groups. Indeed, we need
a fact about hyperbolic group without proof.

Theorem 3.9. (Ubiquity of free groups in hyperbolic groups) Let G be a hyperbolic
group. Then either G is virtually cyclic or G contains a free group of rank 2.

Returning back to our discussion of amenable groups, we conclude the paper
with the following amazing statement on amenability of hyperbolic groups.

Corollary 3.10. Let G be a hyperbolic group. Then either G is virtually cyclic or G
is not amenable.

Proof. Follows directly from the Ubiquity of free groups in hyperbolic groups. □
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